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Abstract-The solution of a crack problem of an arbitrary, but known, shape inside an infinite
plane isotropic elastic medium can be achieved in general by the method ofcomplex singular integral
equations and their numerical solution by using the Gauss- or the Lobatto--Chebyshev methods.
In a few special cases, like straight or circular-are-shaped cracks, this solution is available in closed
form. In this paper we will not contribute to the above methods of solution of crack problems, but
we will propose a method for the determination of the exact position of such a crack inside a closed
contour in the elastic medium by gathering and using information along this contour only (by
experimental techniques) and applying the method of complex path-independent integrals for the
location of the crack. This paper constitutes a nontrivial generalization of relevant previous results
by the author and it is ofquite general applicability in fracture mechanics for nondestructive testing.
Numerical results for the particular case of a straight crack are displayed for the illustration of the
efficiency of the method. The generalization of the present results to the determination ofadditional
geometric and loading parameters of the crack is also suggested very briefly and related numerical
results, concerning the length of the crack and the pressure distribution on it, in the aforementioned
numerical application are also presented.

I. INTRODUCTION

We consider the problem described in some detail in the abstract. We notice that the
solution of crack problems inside an infinite plane isotropic elastic medium can be found
in closed form only in very special cases of the shape of the crack like straight or circular
arc-shaped cracks (Muskhelishvili, 1963). In the general case of curvilinear cracks, the
corresponding problem can be solved numerically by a variety of methods. It is this
author's and many other authors' opinion that the method ofCauchy-type singular integral
equations (SIBs) is the most appropriate, especially when used in its complex form. Only
one such equation, complex of course, has to be solved. The fundamental results on this
method were presented by Ioakimidis (1976) together with a wide variety of applications
and generalizations accompanied by numerical results. Some of the relevant results, in
particular applications and generalizations for arbitrary curvilinear cracks or systems of
such cracks, are those by Theocaris and Ioakimidis (1977a, 1979a, 1980a) and Ioakimidis
and Theocaris (1977a, b, 1978, 1979a, b). It is not our intention to review here, even briefly,
these references.

For the numerical solution of Cauchy-type singular integral equations, either in real
or complex form, for crack problems of arbitrary shape we can use a variety of numerical
techniques. It is generally accepted that the Gauss-Chebyshev method, originally due to
Erdogan and Gupta (1972) and further improved by Theocaris and Ioakimidis (1979b), by
using the natural extrapolation formula, as well as the Lobatto-Chebyshev method pro
posed by Ioakimidis (1976) and considered in further detail by Theocaris and Ioakimidis
(1977b) are the most efficient ones. We will not review these methods here, but we notice
that a long series of relevant papers is available in the literature. Under these circumstances
the solution of a crack problem of arbitrary shape (or a system of such cracks) inside a
finite or infinite plane isotropic or anisotropic elastic medium is very well established both
from the theoretical and numerical points of view.

Ofcourse, beyond complex Cauchy-type SIBs, one can also use a variety of additional
numerical techniques for the solution of curvilinear crack problems including the classical
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Fig. I. Geometry of the crack L and the contour C in the general case ofarbitrary curvilinear shapes
of Land C.

and very popular boundary element method (BEM) [see, e.g. Brebbia et ai. (1984) and
Hartmann (1989) and the references therein], its complex-variable alternative (CVBEM),
originally developed by Hromadka [see, e.g., Hromadka (1984), Hromadka and Pardoen
(1985), Kassab and Hsieh (1990), and Hsieh and Kassab (1991) and the references therein]
for two-dimensional potential problems, etc. These techniques can be applied to curvilinear
crack problems in plane elasticity, exactly like the complex SIE method (as well as to many
more problems) and are also particularly appropriate in this study. In fact, the SIE method
is strongly related to BEM in spite of the different original approaches in thl:'se two methods
and the fact that the SIE method is generally, but not always, used together with classical
quadrature rules without "discretization" of the boundary as is the case in BEM. Because
of our experience with the SIE method, we assume that this is the method used for the
determination of the unknown function g(t), proportional to the edge dislocation density along
the crack L, below (on the understanding that BEM and CVBEM can also be successfully
used), since we will consider only complex path-independent integrals and we will generalize
complex-variable techniques to fracture mechanics. Finally, it is our personal opinion that
the SIE method is more relevant to complex-variable techniques than the BEM and its
variants. Of course, all of the above methods belong to the general category of boundary
integral equations (BIEs).

In this paper we will use the method of complex path-independent integrals not for
the solution of the above general crack problem, but for the location, that is, for the
determination of the exact position, of the crack itself, ifit exists, inside a sectionally smooth
closed contour C surrounding this crack L (Fig. 1) on the basis of simple experimental data
gathered by optical methods along C. We feel it necessary at first to briefly review the
literature on complex path-indepedent integrals, since it is somewhat recent and not very
well known. This will be done in the next section. Afterwards, in Section 3 we will proceed
to the solution of our problem and we will show its effectiveness in Section 4 by a numerical
application in the simple case of a straight crack determining also the crack length and the
pressure distribution along the crack. Finally, in Section 5 we will discuss the proposed
method and we will suggest possible generalizations of it.

2. COMPLEX PATH-INDEPENDENT INTEGRALS

It is very well known from the theory of analytic or, almost equivalently, holomorphic
functions that if such a function fez) (z x+iy) is analytic in the domain S surrounded
by a simple smooth closed contour C and on C as well, then the curvilinear complex integral
of fez) on C vanishes, that is,

£f(Z)dZ = o. (1)

This is the classical Cauchy theorem in complex analysis, reported, e.g., by Copson (1976)
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and Churchill and Brown (1990). On the other hand, if fez) has one pole, z = a, inside C,
then (1) takes the following modified form:

fc fez) dz = 2mB, (2)

where B is the residue of fez) at z = a. This is the classical Cauchy residue theorem in
complex analysis proved also by Copson (1976) and Churchill and Brown (1990). The
positive (anticlockwise) sense along C is assumed to be selected both in (2) and in the sequel
(Fig. I). The value of the integral in (2) does not depend on C, provided that z = a lies in
S (Fig. I), and we can speak about a complex path-independent integral.

In plane elasticity problems, Budiansky and Rice (1973) expressed few classical real
path-independent integrals appearing in fracture mechanics problems in complex form.
One of these integrals was the classical and so popular J-integral. The classical complex
potentials of Kolosov-Muskhelishvili ¢(z) and I/J(z), Muskhelishvili (1963), have been used
for this purpose. Next, Theocaris and Ioakimidis (1980b) proposed the construction of an
infinity of complex path-independent integrals in plane isotropic elasticity by using (2) and
its generalizations withf(z) combining ¢(z) and/or I/J(z) and/or other analytic functions. Of
course, in that paper attention was paid to fracture mechanics and, especially, to the
evaluation of stress-intensity factors. The case of inhomogeneous media with a crack along
the interface was also considered by Ioakimidis (1980). The results of Theocaris and
Ioakimidis (1980b) and Ioakimidis (1980) were generalized by Theocaris an9 Tsamasphyros
(1980), Tsamasphyros and Theocaris (1982a, b) and Tsamasphyros (1981, 1989a, b) always
with the applications to fracture mechanics taken into account. A new method for the
construction of complex path-independent integrals for crack problems was also proposed
by Ioakimidis (1987a) with applications to loaded straight cracks and to unloaded circular
arc-shaped cracks in plane isotropic elasticity as well as to unloaded straight cracks in plane
anisotropic elasticity. More general and mathematically formulated results for complex
path-independent integrals in plane isotropic elasticity were derived by Olver (1984, 1985)
with reference to Tsamasphyros and Theocaris (1982a). Furthermore, complex path
independent integrals were also used for the solution of the problem of a straight crack in
a finite plane isotropic elastic medium by Ioakimidis (1986a) and in plate problems by
Ioakimidis (1992b). Several details on the practical application ofthe method are mentioned
by Ioakimidis (1988a).

A probably more interesting application of complex path-independent integrals, like
(2), is the location of zeros and/or poles of analytic and/or meromorphic functions. For
the case of zeros we have the very old related results reported by Copson (1976) for the
closed-form determination of inverse functions. In a more popular way, this method is
described in brief by Householder (1970), whereas a simpler method was proposed by Abd
Elall et al. (1970). Another method, the Burniston-Siewert method, is also popular for
sectionally analytic functions; it is described in detail by Henrici (1986). Additional results
are mainly due to Ioakimidis and Anastasselou and were derived during the period 1984
87. A review ofall of these results, including a very extensive list of references, was prepared
by Ioakimidis (1987b).

In the case of poles of meromorphic (analytic with poles) functions, we can generalize
the relevant methods for zeros of analytic functions. Related results were obtained by Abd
Elall et al. (1970) and Ioakimidis (1985a, 1986b) with a short review of these results by
Ioakimidis (1987b) as well. As generalizations of these results we can report the location
of essential singularities of a class of analytic functions, Ioakimidis (1988b), and, what is
more important, the location of straight discontinuity intervals of arbitrary sectionally
analytic functions, Anastasselou and Ioakimidis (1987), with an application to crack prob
lems in fracture mechanics.

The idea beneath all of the above results is simply

• to use complex path-independent integrals for the location of cracks or other singu-
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larities in plane isotropic elasticity, which may cause the fracture of the specimen,
as if these were poles of meromorphic functions.

Exactly as in the case of poles of meromorphic functions, we will study an infinite
medium D, but with a Cartesian coordinate system Oxy arbitrarily defined in advance in
an appropriate position of the infinite elastic medium. They are the distance and the polar
angle ofa point K rigidly bound to the geometry of the crack L with respect to this Cartesian
coordinate system Oxy that will be determined. To this aim we will use an arbitrary
sectionally smooth contour C (defining, e.g., a square, a circle, an ellipse, etc.), exactly as in
(1) and (2), Fig. 1, completely surrounding the crack L and, probably, away from the crack
that will be used. This contour is drawn in advance, without restrictions, by us. Obviously.
the medium was aleady assumed infinite or, at least, very large compared to the dimensions
of the crack L and the contour C and, therefore, the contour C is not a boundarv of the
elastic medium. Such a boundary does not exist or, if it does, it lies "at infinity". Of course,
after having assumed a concrete contour C, the Cartesian coordinate system Oxy will be
rigidly attached to this particular contour (Fig. I). We can also add in passing that, as is
clear from the references already reported, the case of zeros of analytic functions is essen
tially reduced to the case of poles of meromorphic functions, since the analytic function
appears always in the denominator of the integrand. Thus a zero of this function, lI(z), is
clearly a pole of l/h(z).

It seems that the aforementioned generalization of the results about zeros and poles
with complex path-independent integrals (both in the theory of analytic functions and in
plane elasticity as well) to cracks is due exclusively to the author. In fact, Ioakimidis (1983)
studied both cases of concentrated forces and of edge straight cracks, as well as short
internal straight cracks, by the above method and the points of application of the con
centrated forces, as well as the crack tips, were determined analytically on the basis of
experimental data gathered by optical methods along a closed contour C only. A much
more general case oflocation of a straight crack, under somewhat restrictive but sufficiently
general loading conditions, in an infinite plane isotropic elastic medium was also considered
later by Ioakimidis (1985b). Moreover, the location of straight-crack tips in finite plane
isotropic elastic media was also studied by Ioakimidis (1986c). In some special cases,
fracture can also be caused by holes and/or inclusions of a different material from that of
the matrix. This case was considered by Ioakimidis (1987d) and for holes in a plate problem
by Ioakimidis (1992b). Another important case is that of inclusions of arbitrary known
shape, but of the same material with the matrix perfectly welded with the matrix, which
was also studied by the above approach, Ioakimidis (1990). Finally, the orders ofsingularity
can also be computed by using complex path-independent integrals (Ioakimidis, 1992a), as
well as the location of branch points (Ioakimidis, 1992c).

In this way, the determination of zeros and/or poles of analytic and/or meromorphic
functions (Ioakimidis, 1987b), has led, little by little, to a more or less powerful method for
the location of cracks and other singularities in plane isotropic elasticity problems,
Ioakimidis (1983, 1985b, 1986c, 1987d, 1990, 1992b, c), Anastasselou and loakimidis (1987L
as if these singularities were poles of meromorphic functions. This seems to be an efficient
method for nondestructive testing in finite domains S of the infinite elastic medium D where
we have no accessibility of observation. Of course, we assume that we have accessibility of
observation along the aforementioned closed contour C surrounding the crack L (Fig. I)
or some other geometrical or mechanical singularity, like a concentrated force or moment,
and being the boundary of the finite region S under consideration. (Classical techniques of
experimental stress analysis can be used to this purpose such as the pseudocaustics method.)
The engineering and, further, industrial applications of this technique, probably automatic
through a computer, are not clear and assured yet; nevertheless, they might be expected in
due course. We can also add in passing the rather interesting generalization of the approach
of path-independent integrals to the location of planar cracks in three-dimensional elastici ty.
Preliminary relevant results were proposed by Ioakimidis (1987c).

Of course, an alternative possibility is to use real path-independent integrals instead
of complex path-independent integrals. Yet, in this case, the formulae will be much more
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complicated than the present ones based on the more or less "elegant" classical complex
variable theory.

For finite media one can also use the methods of singular and hypersingular integral
equations (SIBs and HSIBs) appropriately modified for the detection and the determination
of the shape of the crack L with the contour C coinciding with the boundary of the elastic
medium D. This approach has been already successfully used, e.g. by Hartmann (1989),
for the search of cavities in plane elastic media, Nishimura and Kobayashi (1990, 1991) in
the potential case (harmonic, or Laplace, equation and related crack detection) and by
Tanaka et al. (1990) in the elastodynamic case. This is surely a very interesting and useful
possibility for finite regions D, easily generalizable to infinite regions on the basis of the
present method, but it is also quite different from the present approach, which concerns
infinite media D. Moreover, the present approach is a very simple one as a concept and as
far as the formulae used are concerned contrary to the SIB and HSIB aforementioned
approaches. On the other hand, as was already mentioned, the present results aim at a
futher generalization of the classical and widely used complex-variable techniques for the
location of zeros and poles to fracture mechanics, where the crack L is assumed to be a
kind of "pole" of an appropriate complex potential. This might be an interesting possibility
and, of course, completely impossible by the SIE and HSIE methods as these were used in
the above and related references.

Furthermore, we can add that in practice we can measure very easily and sufficiently
accurately the second derivative <I>'(z) =: ljJ"(z) of the Kolosov-Muskhelishvili complex
potential ¢(z) (Muskhelishvili, 1963), with <I>(z) =: ¢'(z), inplane isotropic elasticity prob
lems under generalized plane stress conditions at any point of the specimen by using
elementary optical methods described in some detail by Theocaris and loakimidis (1980b)
[see also loakimidis (1988a)]. This kind of measurement has been tested repeatedly in
practice [e.g. by Theocaris and Razem (1977), Theocaris (1979), Theocaris et al. (1981)],
with very good experimental results. We will not give further details on these methods here.
We just mention that the term "pseudocaustic" for the image of the closed contour C (Fig.
I) on the screen seems rather completely unsuccessful in spite of the fact that the author
has used this term himself too.

We ought also to add that in the method of the next two sections it will be the
first derivative <I>'(z) of the classical complex potential <I>(z) of plane isotropic elasticity
(Muskhelishvili, 1963) that will be used. The real part of <I>(z) is related to the sum of the
principal stresses (TIl and (T22 at a point and, more explicitly, (TIl +(T22 = 4 Re <I>(z). On the
other hand, 1m <I>(z) is the conjugate harmonic function of Re <I>(z). Although <I>(z) can be
used itself in the present results, we will use its first derivative <I>'(z) in the next two sections.
Strangely enough, this derivative also has a simple physical meaning: as is very well known
from the references in the previous paragraph <1>' (z) is simply proportional to the "complex"
slope of the deformed surface of the specimen under generalized plane stress conditions as
is assumed to be the case here. More explicitly, its real part is proportional to ow/ox and
its imaginary part to -ow/oy, where wdenotes the third coordinate of the front or the rear
originally (but not after loading) plane surface of the deformed specimen. As far as the
proportionality constant is concerned, it is a very simple mechanical constant. Another
mechanical-optical constant, quite easily determined and adjustable to our requirements is
used in the pseudocaustics method. Therefore, <I>'(z) has a very simple physical meaning:
combination of the two slopes just mentioned (with respect to x and y), and it does not
refer to any "difficult" physical quantities or to quantities also having to do with the second
complex potential '¥(z) (Muskhelishvili, 1963). Experiments by the pseudocaustics method,
which is a very simple method, in the aforementioned and related references showed that
it can lead to reliable results, the experimental error being in general satisfactorily small. We
will not enter here into further details. Alternative experimental techniques are mentioned in
Section 5.

Of course, as was also pointed out by Theocaris and loakimidis (1980b), the exper
imental approach ofcomplex path-independent integrals with pseudocaustics along a closed
contour C inside an infinite cracked medium D requires that small mirrors be put at the
nodes to be used along this contour, on just one surface of the specimen, so that the values
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of $'(z) measured at these nodes may be directly used in the numerical integration rule as is
explained in detail in the next section. Alternatively, a grid can be rigidly attached to the
same surface (frequently the rear one) so that we can also know which point on the screen
corresponds to a distinct point (node) on the contour C on the specimen. Evidently, in both
cases, it is just the change of the "complex slope" after loading that is of interest.

We will proceed now to the main result of this paper, that is, the location of an arbitrary
crack L, of known shape and loading conditions, in an infinite plane isotropic elastic
medium by using the method of complex path-independent integrals, described in sufficient
detail above and in more detail in the references of this section, together with the available
experimental information for $'(z) along the known closed contour C surrounding the
crack L (Fig. 1). Essentially, we will "see" the crack as the pole ofa meromorphic function
and not as a curve of discontinuity L of $'(z) as is really the case. An analogous approach
for inclusions of the same material with the matrix and welded with the matrix was already
followed by Ioakimidis (1990).

3. LOCATION OF THE CRACK

We consider the crack L of Fig. I of arbitrary, but known, shape and under arbitrary,
but also known, loading conditions inside the sectionally smooth closed contour C (Fig.
1). We use simultaneously two Cartesian coordinate systems with parallel axes: Oxy (rigidly
attached to the contour C as was already mentioned) with its position known to us and
K~tT (rigidly attached to the crack L) with its centre K not known to us. We denote by
z = x + iy and ( = ~ + itT the corresponding complex variables. It is sufficient to determine
the complex coordinate a = a l +ia2 of the point Kin the Oxy Cartesian coordinate system.
Then the exact location of the crack L will have been determined. Clearly, under these
circumstances, we have (in complex notation) : z = (+ a or ( = z - a. For the points of the
crack L itself, we use the symbols t and r instead of z and (, respectively (Fig. 1).

Since the plane isotropic elastic medium was assumed infinite or, clearly, at least of
sufficiently large dimensions compared to those of C and L in Fig. 1, the complex potential
$(z) == ¢'(z) (Muskhelishvili, 1963), will be of the form (Ioakimidis, 1976)

I i get)$(z) = r + "-0 -- dt,
2m L t-z

where r is a constant of no interest here because of (1). For the crack L in an infinite
isotropic elastic medium it is possible to determine the density get) in the Cauchy-type
integral (3) by using the method of complex Cauchy-type singular integral equations
(Ioakimidis, 1976), with sufficient relevant references given in Section I, or the additional
methods reported in the same section. The crucial point in this way of thinking is that get)
does not depend on the position of L, since we have an infinite medium or, at least, of very
large dimensions compared to those of C and L. Therefore, we can assume without doubts
that get) in (3) is a known function, having been determined in practice by the methods
reported in Section 1. Moreover, since get) does not depend on the position of L inside C,
we can writeg(t) == g*(r) withg*(r) also being a known function. More explicitly, for every
point r of L we have a particular value of g*(r) corresponding to this point and this value
is available to us (after the required computational effort, of no interest in this paper).

Now, by taking into account that t = r+a or r = t-a for the points of the crack L
(Fig. 1), we can rewrite (3) as

$(z) = r + -~': r~*~_ dr.
2m 1r- (z-a)

(4)

Furthermore, since it is $'(z) which is available experimentally along C, we differentiate
once (4) and we obtain
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,Ii g*(r)
$ (z) = -2. [ ( )]2 dr.

1tl L r- z-a

1945

(5)

At this point, we use the classical geometric series (Churchill and Brown, 1990),
appropriately modified in our case, and we assume that Irl < 1'1 = Iz - al in the denominator
of (5), which is really the case if C lies somewhat away from the crack L as in Fig. I and/or
the point K, rigidly attached to the crack L, lies close to the crack. Next, by differentiating
the elementary geometric series, applied here to the denominator of (5), we find directly for
$'(z) that

I 00 A
$'(z) = -2. L: ( ;k+2.

1tl k~O z-a

In this equation we have introduced the new quantities

(6)

(7)

which are related only to the crack L and not to the contour C. Furthermore, since g*(r)
is a known function, of course after the numerical solution of the corresponding crack
problem in our case, A k are also known quantities in advance.

Now we can proceed to the definition of the fundamental complex path-independent
integrals 1m along the closed contour C (always in the anticlockwise sense)

1m =£z"'<I>'(z) dz, m = 0, 1, .... (8)

Since $'(z) is available along C through experimental methods, the values of 1m are also
available to us, usually by using the trapezoidal or some other, frequently equispaced and
rather simple, quadrature rule (Davis and Rabinowitz, 1984). Beyond numerical analysis
books, the literature on boundary element techniques reports several such more or less
elementary and efficient rules. The increase in the number of nodes n used generally gives
much better numerical results for 1m exactly as the increase in the accuracy of the exper
imental data for <I>'(z) along C by paying more attention to the execution of the relevant
experiment for the determination of $'(z) along C, usually at the nodes of the quadrature
rule. Next, by using the classical Cauchy residue theorem (2) (Churchill and Brown, 1990),
we have

£(z-a)m<l>'(z)dz = Am-I> m = 1,2, ... , (9)

because of the expression (6) for $'(z). In the special case where m = 0 (9) takes the
following very simple form

/0 == A_I = £$'(z)dz = 0, (10)

where (6) and (8) were also taken into account. This equation is also clear from (5) and
can be used in practice as a simple method of checking the accuracy of the experimental
data as well as the accuracy of the numerical integration rule used. We will not use (10) in
the sequel.

Returning to (9) and taking into account (8) and (10), we find directly the linear
expressions giving A m _ 1 in terms of 1m (m = 1,2, ...). These expressions can easily be
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derived by using the classical table of binomial coefficients (Dwight, 1961). For the sake of
space we will not display these expressions here. Nevertheless, we will give the expressions
for 1min terms of Am_I (again with m = 1,2, ...)

An = II for m = L

A I+2aA o =I2 for m=2,

A 2+3aA j +3a2A n = 13 for m = 3,

( Ila)

(lIb)

( lie)

A 3+4aA 2+6a2A I +4a3A o = 14 for m = 4. (lid)

A4+5aA3+IOa2A2+lOa3AI+5a4An=Is for m=5. (lIe)

As +6aA 4+ 15a2A 3+20a3A 2 + 15a4A 1 +6a sA o = 16 for m = 6. (110

and so on. These equations can be derived either from the solution of the aforementioned
linear expressions of Am _ I in terms of 1m or, alternatively, simply by taking into account
that zm = [(z-a)+a]m.

At this point, we can add in passing that, quite frequently, the resultant force of the
loading on the edges of the crack L vanishes, e.g. in the cases of unloaded cracks. In this
special case, we have from (7)

An = II =I g*(r) dr = 0 (12)

because of (11 a) too (Muskhelishvili, 1963). In this special, but quite frequent in practice
case, (11a) becomes useless, whereas (12) can be used, exactly as (10), for the verification
of the accuracy of the experimental data and of the efficiency of the numerical integration
rule.

Now we observe from (11) that we have an infinite system of equations for the
determination of only one unknown complex quantity, a, the position of K in the complex
plane (Fig. 1), which is completely sufficient for the location of the crack L. Frequently, we
use (llb) for the determination of a, that is,

(13)

because of (11a). Next, we can check the resulting value ofa by using a few of the subsequent
equations (11). Of course, in the case where L is unloaded (loading only at infinity or far
from the crack L), An and II vanish because of (12). Therefore, (13) cannot be used in this
very important case in engineering applications. In this case, we can simply use (lIe), which
yields

(14)

because of the fact that A I = 12 in this particular case as is clear from (11 b) since (12) holds
true.

We conclude this section with two remarks:

(i) Since the experimental data for <I>'(z) along the closed contour C are available, we
can compute at first the integrals 1m from (8) and use, afterwards, (1 I) for the determination
of a. Clearly, beyond this determination, essentially the location of the crack L as was already
mentioned, the use ofadditional equations from the set of (11) permits us to receive valuable
further information on the geometry and/or loading of the crack L, probably not available
in advance. For example, in the application of the next section, we will determine not only
the position of the crack L, but also its size (length in this application) 2b as well as the
loading intensity p. A further related possibility concerns the determination of the angle of
orientation r:J. of the real crack L in Fig. 1 with respect to the assumed orientation of the
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same crack in the preliminary theoretical/m:unerical determination ofg*(r) in the "generic"
solution as was already explained in detail. This can be easily achieved by using higher
order complex path-independent integrals 1m in the system ofequations (11), but, in practice,
it is clearly understood that higher experimental accuracy will be required as well, since the
numerical errors in 1m will be combined for an increasing number of unknowns (either
geometrical: position, size, orientation, slope, curvature and so on, or mechanical: loading
distribution determined by one or more parameters or simply loading at infinity) for the
crack L.

(ii) Evidently, if no crack exists in the elastic medium inside the closed contour C, <I>(z)
is an analytic function and not a sectionally analytic function as was assumed in the present
section in the finite domain S of the infinite elastic medium D bounded by C (Fig. 1). It is
obvious that in this case the integrals 1m , defined by (8), will vanish identically. This remark
may be of some interest during the potential application of the theoretical results of this
paper to nondestructive testing in future when one has to decide about the existence or
inexistence of a crack L in an inaccesible region S of a plane isotropic elastic medium D
and, in the second case, proceeding to its location and to the determination of a few of its
geometric properties and/or loading conditions. Of course, these future possibilities exceed
the author's aim in this paper, where just the fundamental idea for the location of a crack
L is studied.

4. AN APPLICATION

In this section we will apply the results of the previous section to a very simple, yet
nontrivial, case. We assume that the region S is a circle of radius R bounded by its
circumference C. This boundary C of S was selected, for the sake of convenience, by us
although the real elastic medium D remains infinite. The centre 0 ofthe Cartesian coordinate
system Oxy is assumed to coincide with the centre of this circle S (Fig. 2). In order to
reduce the computational effort, that is, to avoid calculations with complex numbers, we
have restricted our attention to a crack L along the real axis Ox with midpoint at the point
x = a and length 2b. These assumptions do not reduce the generality of the method of the
previous section, aiming simply at its illustration in a rather simple mechanical/geometrical
environment.

It is very well known that, generally, g*(r) presents inverse-square-root power singu
larities at the crack tips (Muskhelishvili, 1963). In our case, we select the following simple
form ofg*(r) :

g*(r) = -2piriJb2-r2
,

y

Fig. 2. Geometry of the straight crack L and the circular contour C in the case of the application.

(15)
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where p denotes a constant pressure with pressure distribution units exactly as cI>(z) itself.
Then we obtain from (4) for cI>(z)

P fh 1 T

cI>(z) = r - n h jb~~~2 T _ (~--=a) dT. (16)

At this point, we can add in passing that just in the case of a straight crack, if we have
a tensile loading only at infinity and parallel to the crack, then our fundamental complex
function cI>'(z) vanishes, exactly as is also the case with the stress-intensity factors at the
crack tips, and the method fails. This is an exceptional "pathological" case and we have to
change the orientation of the loading.

On the other hand, we have available the following classical elementary formula
(Chawla and Ramakrishnan, 1974),

I
- ----~-_._--_._.. _-- -----------

Jr=-- i [( +J(T-=ir '
(¢[-LI], (17)

where TAT) denotes the classical Chebyshev polynomial of the first kind and degree fl. For
fl = 1, Tn(T) = T and (17) reduces to the even more elementary formula

(18)

written here for the interval [- b, b) instead of [- I, I]. This is clearly the case of a crack
under constant pressure distribution or uniform tensile loading at infinity of direction
normal to that of the crack, that is along the Oy-axis in Fig. 2 (Muskhelishvili, 1963).
These cases coincide in this paper since just cI>'(z) is used. In fact, because of (18), (16)
yields, since z-a = (; z = x+iy, (= ¢+ilJ,

whence

(19)

(¢[-b,b]. (20)

In our case, we assume that all three constants: a for the location of the crack, b for
the half-length of the crack and p for the pressure distribution along the crack edges are
not known in advance. In more complicated applications, it would be possible to have more
than three unknown quantities, e.g. the orientation (J. of the crack with respect to the far
field loading (or, almost equivalently, the Ox-axis) and the additional quantities already
mentioned in the previous section, although a is of primary importance in the present paper.
Of course, the requirement for the determination of more than one fundamental quantity,
induding, e.g. the crack position a, the orientation of the crack (J., the crack length 2b, the
loading intensity p, etc., will lead to the necessity of using higher-order complex path
independent integrals and much more computational effort. Therefore, beyond increased
numerical accuracy in the quadrature rules used, higher experimental accuracy will also be
necessary.

On the other hand, it should be observed again that in a real engineering environment
cI>'(z) would be obtained from more or less accurate measurements along the circumference
C of the circle S of Fig. 2. No closed-form formula, like (20), would be available. Never
theless, for convenience and without the slightest loss of generality, we will use the numerical
values for cI>'(z) obtained from (20) along C only as if they were obtained from the
experiment itself. We can proceed now to the required numerical results.
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At first, we use (7) for the evaluation of the quantities Ak • In our case, because of (15)
and putting r = bv, we find easily that

II Vk+1

Ak = -2pi(k+l)bk+ 1
~dv.

-I l-v2
(21)

For even values of k: k = 21 (I = 0, 1, ...), it is directly clear from (21) that Ak vanishes,
whereas this is not true in the case of odd values of k: k = 2/-1 (l = 1,2, ...). In this case,
(21), on the basis of elementary formulae reported by Gradshteyn and Ryzhik (1980)
reduces to

. 211' 3· · (2/-1)
A 21- 1 = -2ptnb 2.4 2(1-1)' 1= 1,2, ....

More explicitly, we find from (22)

(22)

(23)

and so on.
On the other hand, for the integrals 1m , defined by (8), we have used for their evaluation

(20) together with the classical trapezoidal quadrature rule with n nodes along the cir
cumference C of the circle S (Fig. 2). The classical trapezoidal quadrature rule has the
following form for periodic functions with period equal to 2n

12" 2n " (2k - I)n
h(O) dO ~ - L h(Ok)' Ok = , k = 1,2, ... , n,

o n k= 1 n

the error term En being ignored (Davis and Rabinowitz, 1984). Then we obtain

(24)

(25)

for an analytic function fez) along C only as is really the case in (8), where fez) = z"'«I>'(z)
with «I>'(z) given by (20) in the present application. We can now apply (24), with the nodes
given in this formula or any other set of nodes differing from these nodes by a constant,
e.g. Ok = 2kn/n, k = 0, 1, ... , n-lor k = 1,2, ... , n, to the evaluation of the complex
contour integral (25). We do not feel it necessary to give additional relevant details. We
restrict ourselves to the remark that, as is clear in the present special application, the
integrals 1m evaluated along C (Fig. 2) are purely imaginary quantities, because of (8), (20)
and (25) for real values of the geometric parameters a and b.

Moreover, it is obvious from (8) that the first two integrals 10 and II vanish as can
easily be seen by using the path-independence of 1m as the radius R of C tends to infinity.
Finally, we notice that in practice (in the present special application), because of the fact
that Imli take real values for all values of m (m = 0, 1,2, ...) it is sufficient to use only the
nl2 nodes Zk = R eillk in the computer, lying in the upper half of C, provided that the nodes
in (24) are selected, but this is of marginal importance.

In Table 1 we present the computed numerical values of the quantities

r:, = I",/( -ni) = ilmln, m = 0,1, ... ,6, (26)

by the above-described trapezoidal quadrature rule for R = 10, a = 2, b = 3 and p = 1, as
well as for n = 4, 8, 16 and 32 nodes. These results are displayed for m = 0, 1, ... , 6, that
is, they concern the first seven of the complex path-independent integrals 1m as these were
slightly modified by using (26). In the same table we also display the values of the quantities
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Table 1. Numerical results for the integrals 1~ (m = 0, 1, ... ,6), computed by
using (8), (20) and (26) together with the trapezoidal quadrature rule with n = 2J

(j = 2,3,4,5) nodes, the quantities A~ (m = 3,4,5), computed by using (28) [and
not (7)], the position a of the centre of the crack, computed by using (30), the half
of the length of the crack b, computed by using (31), and the tensile loading p,

computed by using (32), in the case where R = 10, a = 2, b = 3 and p = 1

n=4 n=8 11 = 16 n = 32

1* -0.06157348 -0.00635665 -0.00003653 +0.000000000

1* - 0.35527314 -0.03397704 -0.00018864 + 0.00000000I

1"2 = Af + 16.005091 + 17.819807 + 17.999028 + 18.000000
J* +097.04795 + 107.05027 + 107.99500 + 108.000003

J* +615.73484 +670.01942 +674.97431 +675.000004

l~ +3552.7314 +3843.9889 +3869.8682 + 3870.0000
1* -160050.91 +21498.379 +21633.075 +21633.7506

A! +223.43032 +241.29196 +242.99099 +243.00000
A: -26.779439 -02.745123 -00.015862 +00.000001
A~ -177424.14 +2720.4066 +2733.6817 + 2733.7500

a +2.0211892 +2.0024585 +2.0000154 +2.0000000
b +3.0506779 +3.0045144 +3.0000254 +3.0000000
p +0.8598753 +0.9870165 +0.9999291 + 1.0000000

A: = Am/(-ni) = iAm/n, m = 3,4,5, (27)

determined by using the equations

Af = g for m = 1,

A! = It-3al! for m = 2,

A~ = I!-4aIt+6a 2g for m = 3,

A!=l!-5ai!+lOa2It-lOa.1g for m=4,

A! = I~-6al!+ 15a2i!-20a.1It+ 15a4 g for m = 5,

(28a)

(28b)

(28c)

(28d)

(28e)

strongly related to (11) and with the previous remarks taken into account. On the other
hand, the exact values of the above quantities are

(29)

where (23) were also taken into consideration.
Moreover, by using (28b) and the second of (29), we have for the approximate value

of a

a = It/(3g). (30)

This is the value used in (28c-e) for the approximate evaluation of A~, A! and A t displayed
in Table 1, since the true value of a, a = 2 in our case, is not known in advance. On the
other hand, we observe from the first and the third of (28) that

b = fiA ~;(3Xf). (31 )

This is the approximate value of b, displayed in Table 1 for n = 4, 8, 16 and 32 nodes, since
its true value, b = 3 in our case, is not known in advance.

Finally, from the same equations we obtain for p

(32)

This is the approximate value ofp, displayed in Table 1 for n = 4, 8, 16 and 32 nodes, since
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its true value, p :::;;:: I in our case, is similarly not known in advance. The formulae (30), (31)
and (32) permit us, after the evaluation of r:, by using only experimental data and A: by
using (28), the approximate evaluation of the three quantities of interest in our case: a, b
and p, the first two of which concern the geometry of the crack, whereas the third one its
loading, tensile in our case.

In a similar way, we present in Table 2 completely analogous numerical results for the
case when R == 20, a == 10, b :::;;:: 5 and p == I by using now n == 16,32,64 and 128 nodes
in the trapezoidal quadrature rule (24).

From the numerical results of Tables 1 and 2 we observ"'e the extremely rapid con
vergence of these results as the number of nodes n in the trapezoidal quadrature rule
increases. Moreover, we observe the accuracy of the obtained numerical results, especially
for a, band p, which is at least about eight significant digits for n :::;;:: 32 in Table 1 and
n"'" 128 in Table 2. The somewhat lower accuracy in the numerical results of Table 2,
compared to those ofTable 1, is simply due to the fact that the crack L is very long, 2b :::;;:: 10,
in comparison with the radius of the circumference of the circle C, R :::;;:: 20, where the
numerical data were gathered. Moreover, the large value of la!, lal :::;;:: 10, is an additional
relevant reason. This is not the ordinary case in practice in the light of the aims of this
paper: nondestructive testing by using data gathered far away from the singularity which
may cause fracture, the crack L in our case. This behaviour of the numerical results, that
is more accurate numerical results for larger values of R and smaller values ofa and b, was
reany observed in additional computations, beyond those of Tables 1 and 2, as well. Of
course, in experiments we cannot ignore the opposite fact that more accurate numerical
results for <I>'(z) are obtained near the crack L than far away from L. More accurate
experimental techniques are required in this case.

Finally, we observe from the numerical results of Tables 1 and 2: (i) the obvious
fact that At = l~, due to (28a) in our application; (ii) the similarly obvious fact that
n =[1 :::;;:: A ~ == 0 as n -+ co. As was already mentioned, this last fact confirms the cor
rectness of our computations and it is useful as a check of theSe computations. We will not
proceed to further discussion on the numerical results of Tables I and 2, which are
sufficiently clearly displayed, generally in eight significant digits.

5. CONCLUSIONS-DISCUSSION

We have used the above method ofcomplex path-independent integrals for the location
of a crack (of arbitrary shape) inside an infinite plane isotropic elastic medium as if this
crack were a pole ofa meromorphic (analytic with poles) function. We have seen, especially
in the previous section, that we may have unknown not only the position of the crack, but
also other quantities concerning the geometry and/or the loading conditions of the crack.
We have also ohserved the efficiency of the method in the numerical results of the previous

Table 2. Analogous results to those of Table I, but for j "" 4, 5, 6, 7, R = 20,
a - 10, b "" 5 and p "" 1

n= 16 n=32 n=64 n= 128

l~ -0.01701279 -0.00025338 -0.00000OO4 +0.OOOOOOOO
If +0.26424358 +0.00386359 +0.00000055 +0.00000000
I~"" ,41 +45.905079 + 49.94i1l8 +49.999992 +50.000000
1* 1436.6685 -1499.1031 -1499.9999 -1500.00003

It +30897.249 +31861.344 +31874.998 +31875.000
I~ -578678.60 -593542.16 -593749.97 ·-593750.00
It + 10139105.0 + 10367932.0 + 10371093.0 + 10371094.0

AJ +0922.1163 +1861.8816 +1874.9981 +1875.0000
At -9404.2111 -O1l2.8410 -0000.0158 +0000.0000
A~ -110337.12 +56519.084 +58593.462 +58593.747

a - 10.432168 -10.005804 -10.000001 -10.000000
b +3.6594586 +4.9854145 +4.9999979 +5.00000oo
P + 1.7139457 +1.0046753 +1.0000007 +t.OOOOOOO

$AS 30:14-8
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section (Tables 1 and 2) and we essentially expressed the opinion that the results of the
present paper, although theoretical in principle, might become in future the background
for the development of a viable engineering/industrial technique of nondestructive testing
about the existence or inexistence of a crack in a region S where we have no accessibility
of observation beyond its boundary C (Fig. I or Fig. 2 for the application of the previous
section). Unfortunately, we do not have available the experimental and relevant facilities
for the development of this technique ourselves.

We have already used two "vehicles" in our results: (i) the first derivative <1>' (z) of the
classical complex potential <1>(z) of Kolosov-Muskhelishvili, and (ii) the experimental
method of pseudocaustics. This happened because of the simplicity of these "vehicles" and
our experience with them in previous results by us. In Section 2 we had also the opportunity
to explain in some detail the simple physical meaning of <1>'(z) (as the pair of slopes of the
specimen surface in complex form). Similarly, the experimental method of pseudocaustics.
based just on the reflection and, usually, diffraction as well of light rays. is also a very
simple experimental method. Nevertheless, experimental stress analysis offers a variety
of well-known techniques, some of which are much more accurate than the method of
pseudocaustics, which can also be used. These techniques include interferometry, holog
raphy, photoelasticity, moin~ fringes, speckle patterns, diffraction methods, optical sensors.
their various combinations, etc. We are not experts in these methods, we will not analyse
the corresponding experimental errors and we simply make reference to the related litera
ture, e.g. in the journals Experimental Mechanics and Experimental Techniques. What is
sure is that one can use experimental data along the closed contour C and, probably, in its
close neighbourhood in order to be able to derive any required results for the stress,
strain and displacement components in the specimen and for their derivatives. Yet quite
frequently, the experimental data should be combined with appropriate related numerical
techniques. This means that in practice we have not to restrict ourselves to <1>'(z) as a
"vehicle" for the derivation of our method, but we can also use any other complex potential
or combination of complex potentials. <1>(z) is such a good candidate and the required
modification of the formulae of the previous two sections is rather trivial and will be
omitted.

On the other hand, it is clear that any computational technique appropriate for plane
elasticity problems, like the SIE and the HSIE methods, can be used in the present problem,
supplied with the appropriate set ofdata, so that the location, the orientation and additional
parameters of a crack can be derived. One has just to solve the necessary number of linear
equations accompanied by one or more nonlinear equations, and a powerful computer
environment is sufficient. This is the "direct" approach to the problem. Here the approach
is different: it aims at as simple results as possible and it is based on the generalization of
the classical complex-variable techniques for zeros and poles of analytic/meromorphic
functions and on complex path-independent integrals. It "sees" the crack as a "pole" of a
meromorphic function in complex analysis. Tn this sense, the present results arc quite
different from those by the SIE and HSIE related methods, some of which were referenced
in Section 2. Finally, the present method concerns infinite media (and not finite media as
the previous methods) and it uses an arbitrary closed contour C surrounding the crack L
and not the external boundary r of the medium. Of course, the present method can, in
principle, easily be generalized for finite media by using complex Cauchy-type SIEs or
HSIEs, where both the external boundary r and the crack L will be simultaneously
taken into account. The related numerical solution and the determination of the unknown
parameters of the crack (on the basis of the available data) can be made either by direct or
by indirect (iterative) methods such as the well-known and widely used '"alternating
method". In such a case of a finite medium, the contour C may coincide with the external
boundary r of the elastic medium D or it may not, but in the latter case much more
computational effort will be required. In any case, this author is convinced that complex
variable techniques, like complex path-independent integrals in this paper, lead to simpler
equations than their real-variable alternatives in classical plane elasticity.

Another question concerns which equations out of (11) should be llsed. In the appli
cation in Section 4 we used the first nontrivial one(s), that is that/those corresponding to
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the smaller integer(s) m. This is natural. Moreover, this is also advisable, since the computa
tion of the integrals in (8) becomes more "difficult" from the numerical analysis point of
view for higher values of m and, therefore, in general, more nodes are required in this case.
Of course, it is clearly understood that, because of unavoidable errors in experimental data
and in numerical integration, the numerical results for the crack location and, possibly, the
additional required parameters, will be slightly different if another equation or a set of
equations (11) is used. Normally, the difference will not be significant. Ifit is, higher accuracy
in the experimental data and in numerical integration will be required. Alternatively, if
we wish, we can use a larger number of equations (11) than that really required for the
determination of the unknown parameters and proceed by a least-square approach. In
principle, this technique cannot be recommended because of the relative increase in the
errors of numerical integration for higher values of m in (11). Alternatively, the most
reliable value ofa is generally that derived from that equation out of (11) which corresponds
to the lowest value of m. In any case, from the theoretical point of view, a in (11) satisfies
all of these equations simultaneously; it is only the experimental and numerical errors that
may lead to slightly different numerical results depending on the equation chosen for the
determination of a. By no means can we speak in the present case about nonuniqueness in
the solution of our problem, but we can surely speak about the influence of errors (exper
imental and numerical) on the final results. These are, of course, unavoidable in most
computations.

A quite similar problem arises in singular integral equations (SIEs and HSIEs). When
solving such an equation by the quadrature method, we approximate it by a numerical
integration rule. Next, the approximate equation is applied at a set of nodes, which can
generally be selected arbitrarily. Ifwe use the whole interval (a, b) of integration as nodes,
we obtain an infinite number ofequations for our infinite collocation points. But, generally,
we are satisfied by using a simple set of nodes and the related equations exactly as we have
selected in Section 4 the simplest equations out of (11) and we understand that another
selection of the nodes will lead to slightly different results, where, of course, the accuracy
of the numerical integration rule is of fundamental importance. Exactly similar is the
collocation method for SIEs and HSIEs although, obviously, one can attempt the opti
mization of the numerical results (solution of the SIE or HSIE, determination of the stress
intensity factors, etc.) by the least-square method or the similar Galerkin method with quite
a doubtful improvement of the numerical results for the same computational effort. This
case is completely analogous to our case with (11). Of course, exactly as nobody can claim
about nonuniqueness in a SIE or HSIE because of the slight difference of the results
when collocation points are chosen in a different way, similarly, we cannot speak about
nonuniquenes of our numerical results because of the selection of the simplest equations
out of (11). Nonuniqueness concerns important problems in a mathematical formulation
where this formulation does not lead, theoretically, to just one solution and has nothing to
do with the influence of numerical and experimental errors on the results.

In Section 2 we have had the opportunity to make reference to several results for the
location of cracks, holes and inclusions and the determination of their parameters in an
elastic medium. This is also the problem having been studied here. This problem is not the
classical problem of elasticity, where the position of the crack is known in advance and just
its solution is required. In this sense, we can say that here (as well as in the aforementioned
references) we have an inverse crack problem and we have to determine the crack location
and, possibly, additional parameters (as in Section 4). Although the present problem can
clearly be labeled as an inverse one, by no means is it an ill-posed problem (as is the case,
e.g., in some integral equations of the first kind, but not in SIEs or HSIEs). The numerical
results of Section 4 verify the well-posedness of our problem, but, of course, it is also well
understood that the present technique is just a generalization ofthe related complex-variable
techniques for zeros/poles of analytic/meromorphic functions already reported in brief in
Section 2. All of these methods are very well posed and completely assure the uniqueness
of their results. Quite similar is their present generalization to fracture mechanics problems.

Finally, just for the better understanding of the principle of the method, in which we
have been particularly interested, and for the sake ofconvenience as well, we have restricted



1954 N. l. IOAKIMIDIS

our attention to the case of one crack and to the case of a homogeneous infinite plane
isotropic elastic medium. Yet, clearly, the previous results can be easily generalized to the
case of a system of cracks [instead of only one crack (Figs 1 and 2)], as well as to the cases
of a combination ofcracks with holes and/or inclusions always for an infinite plane isotropic
elastic medium. In the case of anisotropic elastic media, the method becomes sufficiently
complicated with the relevant experimental techniques most probably inapplicable.
Similarly, the present technique is only approximately valid for media D of sufficiently large
dimensions compared to those of the crack L and the contour C as well (Figs I and 2)
although it is generalizable to finite media as was mentioned previously. Moreover, of
particular importance may be the cases of arrays of periodic, doubly-periodic and star
shaped cracks or the case of a half-plane or even two welded along their interface half
planes of different materials. We can easily generalize our method to these cases, taking also
into account the relevant references reported in Section 1. Additional easy generalizations of
the present method seem also quite possible and expected by the author to appear in the future
by himself and/or by other interested researchers.

Acknowledgements-(i) The results reported here belong to a research project supported by the Greek General
Secretariat of Research and Technology. The author gratefully acknowledges the financial support of this General
Secretariat. (ii) The author also acknowledges with many thanks several interesting remarks by the referees on
the original version of this paper.

REFERENCES

Abd-Elall, L. F., Delves, L. M. and Reid, J. K. (1970). A numerical method for locating the zeros and poles of
a meromorphic function. In Numerical Methods for Nonlinear Algebraic Equations (Edited by P. Rabinowitz),
Chap. 3, pp. 47-59. Gordon and Breach, London.

Anastasselou, E. G. and Ioakimidis, N. 1. (1987). On the location of straight discontinuity intervals of arbitrary
sectionally analytic functions by using complex path-independent integrals. Comput. Meth. Appl. Mech. Engng
65, 165-176.

Brebbia, C. A., Telles, J. C. F. and Wrobel. L. C. (1984). Boundary Element Techniques: Theory and Applications
in Engineering. Springer, Berlin.

Budiansky, B. and Rice, J. R. (1973). Conservation laws and energy-release rates. J. Appl. Mech. 40, 201203.
Chawla, M. M. and Ramakrishnan, T. R. (1974). Modified Gauss-Jacobi quadrature formulas for the numerical

evaluation of Cauchy type singular integrals. BIT 14, 14-21.
Churchill, R. V. and Brown, J. W. (1990). Complex Variables and Applications (5th Edn). McGraw-Hill. New

York.
Copson, E. T. (1976). An Introduction to the Theory oj' Functions oj' a Complex Variable (13th impression).

Oxford Univesity Press-Clarendon Press. Oxford.
Davis, P. J. and Rabinowitz, P. (1984). Methods of Numerical Integration (2nd Edn). Academic Press. Orlando,

FL.
Dwight, H. B. (1961). Tables of Integrals and Other Mathematical Data (4th Edn). Macmillan, New York.
Erdogan. F. and Gupta, G. D. (1972). On the numerical solution of singular integral equations. Q. Appl. Math.

29, 525-534.
Gradshteyn, 1. S. and Ryzhik, I. M. (1980). Table olintegrais. Series, and Products (2nd English Edn). Academic

Press, New York.
Hartmann, F. (1989). Introduction to Boundary Elements: Theory and Applications. Springer. Berlin.
Henrici, P. (1986). Applied and Computational Complex Analysis, Volume Three: Discrete Fourier Analysis

Cauchy Integrals-Construction of Conformal Maps-Univalent Functions (1st Edn). Wiley, New York.
Householder, A. S. (1970). The Numerical Treatment oj' a Single Nonlinear Equation (1st Edn). McGraw-Hill,

New York.
Hromadka II, T. V. (1984). The Complex Variable Boundary Element Method. Springer. Berlin.
Hromadka II, T. V. and Pardoen, G. C. (1985). Application of the CVBEM to non-uniform St. Venant torsion.

Comput. Meth. Appl. Mech. Engng 53, 149--161.
Hsieh, C. K. and Kassab, A. J. (1991). Complex variable boundary element methods for the solution of potentIal

problems in simply and multiply connected domains. Comput. Meth. Appl. Mech. Engng 86,189-213.
Ioakimidis, N. 1. (1976). General methods for the solution of crack problems in the theory of plane elasticity.

Doctoral Thesis at the National Technical University of Athens, Athens. [Available from University Microfilms,
Ann Arbor, MI; Order No. 76-21,056; in Greek with an extensive English summary.}

Ioakimidis, N. 1. (1980). On the evaluation of stress intensity factors in interface crack problems by using complex
path-independent integrals. Int. J. Fract. 16, R37-R41.

Ioakimidis, N. 1. (1983). Application of the optical method of pseudocaustics to locating crack tips in plane
elasticity problems. Int. J. Fract. 23, RI17-RI20.

Ioakimidis, N. 1. (1985a). Application of the generalized Siewert-Burniston method to locating zeros and poles
of meromorphic functions. Z. Angew. Math. Phys. 36, 733-742.

Ioakimidis, N. 1. (1985b). Locating a straight crack in an infinite elastic medium by using complex path
independent integrals. Acta Mech. 57, 241-246.

Ioakimidis, N. 1. (1986a). Application of complex path-independent integrals to the solution of the problem of a
straight crack in a finite plane isotropic elastic medium. J. Elast. 16,441--456.



Locating a crack with path-independent integrals 1955

Ioakimidis, N. I. (l986b). Determination of poles of sectionally meromorphic functions. J. Comput. Appl. Math.
15,323--327.

Ioakimidis, N. I. (I986c). A note on locating straight-crack tips in finite plane elastic media. Int. J. Fract. 32,
Rll-RI2.

Ioakimidis, N. I. (1987a). A new approach to the construction of some path-independent integrals about crack
tips. In Proceedings of the First National Congress on Mechanics, Athens, 1986, Vol. I, pp. 459-469. Hellenic
Society for Theoretical and Applied Mechanics and the Technical Chamber of Greece, Athens (in English).

Ioakimidis, N. I. (I987b). Quadrature methods for the determination of zeros of transcendental functions-a
review. In Numerical Integration: Recent Developments, Software and Applications (Edited by P. Keast and
G. Fairweather). Proceedings of a NATO Advanced Research Workshop, Halifax, Nova Scotia, 1986, pp.
61-82. D. Reidel, Dordrecht, The Netherlands.

Ioakimidis, N. I. (1987c). A class of surface-independent integrals in three-dimensional elasticity with an appli
cation to locating planar cracks. Int. J. Fract. 33, R51-R54.

Ioakimidis, N. 1. (1987d). Application of complex path-independent integrals to locating circular holes and
inclusions in classical plane elasticity. Technical Report, School of Engineering, University ofPatras.

Ioakimidis, N. 1. (1988a). On the practical application of the method of complex path-independent integrals to
problems offracture mechanics. Int. J. Fract. 36, R51-R54.

Ioakimidis, N. I. (l988b). Location ofessential singularities ofa class ofanalytic functions. Int. J. Comput. Math.
25, 129-138.

Ioakimidis, N. 1. (1990). Locating inclusions of the same material in finite plane isotropic elastic media by using
complex path-independent integrals. Strojn. Cas. 41, 353-364.

Ioakimidis, N. I. (1992a). Computation of the orders of singularity of sectionally analytic functions. Appl. Math.
Comput.48, 13-19.

Ioakimidis, N. I. (1992b). Application of complex path-independent integrals to problems of bending of thin
elastic plates. Arch. Appl. Mech. (Ing.-Arch.) 62, 248-255.

Ioakimidis, N. I. (l992c). Locating branch points of sectionally analytic functions by using contour integrals and
numerical integration rules. Int. J. Comput. Math. 41, 215-222.

Ioakimidis, N. 1. and Theocaris, P. S. (l977a). The problem of the simple smooth crack in an infinite anisotropic
elastic medium. Int. J. Solids Structures 13, 269-278.

Ioakimidis, N. 1. and Theocaris, P. S. (1977b). Array of periodic curvilinear cracks in an infinite isotropic medium.
Acta Mech. 28,239-254.

Ioakimidis, N. 1. and Theocaris, P. S. (1978). Doubly-periodic array of cracks in an infinite isotropic medium. J.
Elast.8, 157-169.

Ioakimidis, N. I. and Theocaris, P. S. (I979a). A system of curvilinear cracks in an isotropic elastic half-plane.
Int. J. Fract. 15,299-309.

Ioakimidis, N. I. and Theocaris, P. S. (1979b). The second fundamental crack problem and the rigid line inclusion
problem in plane elasticity. Acta Mech. 34, 51-61.

Kassab, A. J. and Hsieh, C. K. (1990). Application of the complex variable boundary element method to solving
potential problems in doubly connected domains. Int. J. Numer. Meth. Engng 29, 161-179.

Muskhelishvili, N. 1. (1963). Some Basic Problems of the Mathematical Theory of Elasticity (2nd English Edn).
P. Noordhoff, Groningen, The Netherlands.

Nishimura, N. and Kobayashi, S. (1990). Regularized BIBs for crack shape determination problems. In Boundary
Elements XII (Edited by M. Tanaka, C. A. Brebbia and T. Honma), Vol. 2, pp. 425-434. Computational
Mechanics Publications, Southampton, and Springer, Berlin.

Nishimura, N. and Kobayashi, S. (1991). A boundary integral equation method for an inverse problem related
to crack detection. Int. J. Numer. Meth. Engng 32, 1371-1387.

Olver, P. J. (1984). Conservation laws in elasticity: II. Linear homogeneous isotropic elastostatics. Arch. Rat.
Meeh. Anal. 85,131-160.

Olver, P. J. (1985). Symmetry groups and path-independent integrals. In Fundamentals of Deformation and
Fracture (Edited by B. A. Bilby, K. J. Miller and J. R. Willis). Eshelby Memorial Symposium, Sheffield, 2-5
April 1984. International Union ofTheoretical and Applied Mechanics, pp. 57-71. Cambridge University Press,
Cambridge.

Tanaka, M., Nakamura, M. and Nakano, T. (1990). Detection of cracks in structural components by the
elastodynamic boundary element method. In Boundary Elements XII (Edited by M. Tanaka, C. A. Brebbia
and T. Honma), Vol. 2, pp. 413-424. Computational Mechanics Publications, Southampton, and Springer,
Berlin.

Theocaris, P. S. (1979). Experimental study of plane elastic contact problems by the pseudocaustics method. J.
Mech. Phys. Solids 27, 15-32.

Theocaris, P. S. and Ioakimidis, N. 1. (l977a). A star-shaped array of curvilinear cracks in an infinite isotropic
elastic medium. J. Appl. Meeh. 44, 619-624.

Theocaris, P. S. and Ioakimidis, N. I. (1977b). Numerical integration methods for the solution of singular integral
equations. Q. Appl. Math. 35, 173-183.

Theocaris, P. S. and Ioakimidis, N. 1. (1979a). The problem of interaction between a misfitting inclusion and a
crack in an infinite elastic medium. J. Elast. 9, 97-103.

Theocaris, P. S. and Ioakimidis, N. I. (1979b). A remark on the numerical solution of singular integral equations
and the determination of stress-intensity factors. J. Engng Math. 13,213-222.

Theocaris, P. S. and Ioakimidis, N. 1. (1980a). A numerical method for the solution of plane crack problems in
finite media. Int. J. Math. and Math. Sci. 3, 739--760.

Theocaris, P. S. and Ioakimidis, N. I. (1980b). Stress-intensity factors and complex path-independent integrals.
J. Appl. Meeh. 47, 342-346.

Theocaris, P. S., Ioakimidis, N. 1. and Razem, C. 1. (1981). The method of pseudocaustics for the experimental
solution of simple elasticity problems. Int. J. Mech. Sci. 23, 17-29.

Theocaris, P. S. and Razem, C. (1977). Deformed boundaries determined by the method of caustics. J. Strain
Anal. 12,223-232.



1956 N. I. 10AKIM\l)lS

Theocaris, P. S. and Tsamasphyros, G. (\ 980). On the complex path-independent integrals used in plane elasticity
problems. Proc. Acad. Athens 55, 441-472 (in English).

Tsamasphyros, G. (1981). On some path-independent integrals of plane elasticity. In Mixed-Mode Crack Propa
gation (Edited by G. C. Sih and P. S. Theocaris), pp. 269-281. Sijthoff and Noordhoff, Alphen aan den Rijn,
The Netherlands.

Tsamasphyros, G. (\989a). Mixed mode crack analysis using complex path-independent integrals. Engng Fract.
Mech. 34, 359-368.

Tsamasphyros, G. (1989b). Path-independent integrals in anisotropic media. Int. J. Fract. 40, 203-·219.
Tsamasphyros, G. J. and Theocaris, P. S. (\ 982a). A new concept of path-independent integrals for plane elasticity.

J. Elast. 12,265-280.
Tsamasphyros, G. J. and Theocaris, P. S (\ 982b). Path-independent integrals in inhomogeneous media. Ing.·

Arch. 52, 159-166.


